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Abstract—In the research of quadruped robots, stability is a 

very important consideration for gait design. When the robots 

have symmetrical structure, stability can be easily guaranteed. 

However, when the robots are carrying some additional devices 

or payloads unevenly, the position of the center of gravity (COG) 

may deviate from the geometrical center, which makes it a 

challenging task to guarantee stability. To handle this, it is of 

great significance to improve the stability margin during gait 

design. To this end, a smooth static walking gait with the 

maximum stability margin is developed in this paper. An 

algorithm of COG trajectory optimization based on the 

lemniscate of Gerono is proposed. The advantage of this 

algorithm is that the COG trajectory is smooth and continuous 

at any order, which avoids abrupt changes in velocity or 

acceleration of the robot during walking. The two parameters in 

the lemniscate are the main tuning parameters. According to the 

size of the robot, the algorithm can automatically calculate the 

optimal parameters (adjust the shape of the Gerono lemniscate 

curve) and balance the relationship between the step size and 

the stability margin during the robot movement. Simulation 

results demonstrate the effectiveness of the proposed method, 

and we use a mass block experiment to prove the insensitivity of 

the gait algorithm to the position of the COG. 

 

I. INTRODUCTION 

The research of legged robots has attracted extensive 
attention in the field of mobile robots in recent years. This may 
because legged robots are much more adaptable to complex 
terrains than wheeled and track-based robots. Legged robots 
mainly include one-legged robots, biped robots, quadruped 
robots, hexapod robots, and so on. Among them, quadruped 
robots seem to be more popular than the other legged robots 
since it makes a good balance between stability and 
complexity. Among all the research areas of quadruped robot, 
gait planning is a significant aspect since the robots cannot 
walk through various terrains or accomplish specific tasks 
without robust walking gaits. 
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Quadruped gaits can be classified into static gaits and 
dynamic gaits. No matter what type of gait, maintaining 
stability of the robot is the key problem for gait planning. In a 
static gait, the robot has at least three legs in contact with the 
ground at any moment. It is well known that a walking robot is 
statically stable if the vertical projection of the COG of the 
robot is within the support polygon. Meanwhile, the concept 
of stability margin [1] is an important index to evaluate the 
performance of a gait algorithm. A detailed mathematical 
analysis given by McGhee and Frank [1] shows that there 
exists a unique optimum gait sequence that maximizes the 
static stability.  Besides, the stability margin is mainly 
influenced by the COG trajectory. Therefore, how to plan the 
trajectory of the COG becomes a key problem to obtain 
enough stability margin for the robot.  

After McGhee and Frank coming up with the Stability 
Margin (SM) [1], various stability criteria for the static gaits 

were proposed，for example, Longitudinal Stability Margin 

(LSM) [2] given by S.M. Song and K.J. Waldron, Static 
Stability Margin (SSM) [3] proposed by C. D. Zhang and S. M. 
Song, Energy Stability Margin (ESM) [4] and the Normalized 
Energy Margin (NESM) [5] and so on. Among these stability 
criteria, researchers prefer to use the SM more often because 
it’s more intuitive and computationally easier than the other 
methods. Therefore, we also use SM to evaluate the stability 
of the robot and calculate the stability margin in this paper.  

The stability margin is determined by the projection 
location of the quadruped robot’s COG in the supporting 
polygon. To optimize the stability margin, it requires a careful 
planning for the trajectory of the COG. A great deal of 
researches had been done in this area. Fan-Tian Cheng et al. [6] 
might be the first to point out that the robot’s body sway 
motion could greatly increase the stability margin of the robot. 
They also proposed two sway motion, including Y-Sway and 
E-Sway, which provides a new idea for the COG trajectory 
planning. These two sway motions were easy to implement. 
By using these two sway motions, the stability margin of 
quadruped robots can be greatly improved. In [7], B. H. Kim 
et al. identified the centroid of foot polygons formed in every 
step of a moving quadruped robot, analyzed and put forward a 
performance index to measure the balance of motion. 
According to the robot’s centroid trajectory and the proposed 
balance index, a kind of swing motion which is important in 
quadruped motion is estimated. Dimitris Pongas et al. 
designed a special COG trajectory algorithm that allows the 
robot to traverse rough terrains [8].  They added sinusoidal 
components to the fore-aft and lateral motion of the robot’s 
body. The experimental results were nice. In [9], a novel 
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line-based COG trajectory planner was introduced. The 
algorithm was simpler than traditional polygon-based methods. 
Besides, there are also other ways to improve the stability 
margin. Dong-Oh Kang et al. proposed a new criterion for the 
stability margin based on ZMP in response to unknown forces 
[10].  T.T. Lee gives the mathematical expression of the 
relationship among the stability margin, step size, and duty 
factor [11]. 

However, most of the aforementioned work only consider 
to obtain an acceptable stability margin rather than maximize 
the stability margin of the robot.  Besides, most of the gait 
algorithms have not been tested on quadruped robots with 
COG position significantly deviated from its geometric center. 
The robot can walk normally with a certain stability margin, 
but if a heavy object is placed on the corner of of the body, the 
deviated COG position may get out of the stability margin and 
the robot may tip over. In this case, it is important to design a 
more robust gait algorithm that can ensure a large enough 
stability margin which is insensitive to the shifting of the 
robot’s COG. 

In this paper, a new COG trajectory planning method was 
proposed for quadruped robots based on the lemniscate of 
Gerono, which ensures the robot to have a large stability 
margin at every moment of movement. And the gait algorithm 
can be easily applied to robots with different sizes by changing 
the parameters. It is shown that the proposed gait can 
effectively improve the stability margin of a quadruped robot. 
Several factors that influence the gait stability margin of the 
robot during static walking are analyzed, including two 
parameters in the lemniscate curve and the step length. 
Optimal values for those parameters are computed. The 
robustness of the gait is verified through both V-rep 
simulations and experiments on our lab robot. The main 
contributions of this paper are as follows: (1) Taking stability 
as the primary factor, a new gait algorithm of quadruped robot 
is designed (It includes the design of the COG trajectory based 
on a special lemniscate, the design of six stages of periodic 
motion and the periodic coordination planning between the 
body and the foot). This gait not only enables the quadruped 
robot with symmetrical structure to have as much stability 
margin as possible at any moment of movement, but also 
enables the quadruped robot with the COG deviated from 
geometric center to have excellent stability (i.e., insensitive to 
the COG shifting). (2) The proposed method has easy-to-tune 
parameters, which makes it widely applicable to different 
quadruped robots. As long as the basic dimensions of the robot 
are given, the algorithm can be applied to the robot easily. The 
algorithm has strong robustness and can obviously improve 
the stability margin. This allows the robot to perform specific 
tasks (tasks that require high stability) in this gait. 

This rest of the paper is arranged according to the following 
structure. Section II introduces the design of a smooth static 
gait based on the Gerono lemniscate and addresses how the 
walking cycle is coordinated with the COG trajectory.  In 
Section III, the relationship of the gait parameters and stability 
margin is analyzed to find the optimal parameters according to 
the real robot’s size. Section IV gives the simulation results. 
Conclusions are given in Section V. 

II. SMOOTH STATIC GAIT DESIGN 

A. Quadruped Robot Models 

We built two robot models used in this paper which are 
shown in Fig. 1. They are simulation models established based 
on the real robots in our laboratory. The real robots are shown 
in Fig. 2. The left robot which we call Robot 1 in this paper 
consists mainly of a body and four identical legs connected to 
the body. Each leg has three joints, including the hip 
abduction/adduction (HAA), hip flexion/extension (HFE), and 
knee flexion/extension (KFE). We do the gait algorithm’s 
basic design and verification mainly on this symmetrical robot. 
The robot on the right is a simulation model based on the 
Robot 2 which has attached with many devices and is more 
complicated. We mainly use it to verify that the gait algorithm 
can adapt to different quadruped robots and is insensitive to 
the shift of COG position (Robot 2 is not completely 
symmetrical).  

    
(a) Robot 1                        (b) Robot 2 

Fig. 1.   The simulation quadruped robots in V-rep 

 

 
(a) Robot 1                        (b) Robot 2 

Fig. 2.   The prototype quadruped robots in the lab. 

To simplify the problem, we make the following 

assumptions for Robot 1: 

(1)  Assume that the center of mass lies in the geometric 
center of the body. 

(2) The height of the robot remains unchanged during 
movement. 

B. Smooth COG trajectory 

Static gait has six possible leg sequences, among which 

the sequence of [right hind, right front, left hind, left front] 

(RH, RF, LH, LF) is proved to have the optimal static stability 

margin [12]. Therefore, this sequence of legs is adopted in 

this paper. In general, the gait cycle of a quadruped robot can 

be divided into eight phases as shown in Fig. 3, four of which 

are the four-leg standing phases and four are the one-leg 

swinging phases.  
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Fig.3.   The gait diagram of a quadruped robot. The black box represents the 
leg in contact with the ground, and the white box represents the swing leg. 

 

According to the stability criterion, in a static gait, the 

COG should fall in the polygon formed by the supporting feet 

to remain stable. This condition can be easily satisfied when 

all the four feet of the robot touch the ground. More 

considerations are needed during the one-leg swinging phase 

to make the COG projection of the robot stay in the 

supporting triangle and have enough stability margin. With 

the swing leg sequence of 4-2-3-1, the supporting triangles 

during the one-leg swinging phase are depicted in Fig. 4. 

 
Fig.4.   The supporting triangle changes in a gait cycle. 

 

In Fig. 4, the yellow circles represent the feet that touch 

the ground and the green one represents the swinging foot. 

The blue areas are contracted triangles within the 

supporting polygon. The COG falling in the contracted 

triangle can ensure the stability of the robot even if there 

are some uncertainties and measurement deviations. d  is 

the step length of the robot. ijS  represents the distance 

from the projected COG to the line connecting the i-th foot 

and the j-th foot. 

To maintain stability, a simple rule can be found, that is, 

the COG should always be placed in the opposite diagonal 

position of the swing leg.  For example, when the 

right-hind leg swings, the COG should be projected in 

left-front, and when the right-front leg swings, the COG 

should be located in the left-hind. So is the case when the 

other legs swing.  

 
Fig.5.   Four stages of COG movement within the supporting triangle. 

 

The movement of the COG within the supporting 

polygon can be divided into four stages as shown in Fig. 5. 

It can be seen that the supporting triangles of the first and 

second stages have an overlapped region, shown as the 

yellow part, which is usually called double support triangle 

(DST) [13].  Therefore, we can remove the third phase 

(four-legged standing phase) in Fig. 3. Similarly, phase 7 in 

Fig. 3 can also be removed. However, it can be found that 

there is no overlap between the second and the third stages 

in Fig. 5. So we have to add a four-leg stance phase 

between them, which is phase 5 in Fig. 3. For the same 

reason, add the first phase in Fig. 3.  As a result, the new 

gait sequence for a cycle is shown in Fig. 6. 

 
Fig. 6.   The new gait diagram of the quadruped robot. 

 

 
Fig. 7.   Several types of figure-eight curves. 

 

Also, it can be observed from Fig. 5 that the trajectory of 

the COG should follow a figure-eight curve to ensure the 

maximum stability margin of the quadruped robot in the 

process of moving. For the figure-eight curve, there are 

multiple options as shown in Fig. 7. In Fig.7 (a), simple line 

trajectories are used as COG’s trajectory. However, it has 

discontinuous velocity and acceleration, which inevitably 

degrades the walking performance of the robot. We can also 

design the trajectory as the shape shown in Fig. 7 (b). The 

inclination of the two-line segments on the top of the curve 

lies in the middle of angles A and B in Fig. 5, that is, the 

trajectory of the COG passes through DST along the angular 

bisector of angles A and B, which makes the stability margin 

better. However, it’s velocity is still discontinuous.  

A better option is to choose a smooth curve as the COG 

trajectory. A curve with continuity to the third order can 

guarantee a continuous velocity and acceleration of motion, 

which greatly increases the smoothness of the movement and 

thus improves the walking performance for the robot. Two 

kinds of smooth curves are investigated here, including the 

lemniscate of Bernoulli shown in Fig.7 (c) and the lemniscate 

of Gerono in Fig.7 (d).  

The parametric equation for the lemniscate of Bernoulli is 

as follows [14]: 

       
2

2

sin

1 cos

sin cos

1 cos

a t
x

t

a t t
y

t







                                (1) 

Here if we replace the coefficient a  in the x  and y  

equation with two different coefficients a  and b , then we 

can adjust the amplitude in the x  and y  directions 

separately. We call it the extended form for the lemniscate of 

Bernoulli 
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2

2

sin

1 cos

sin cos

1 cos

a t
x

t

b t t
y

t







                           (2) 

Similarly, the parametric equation for the lemniscate of 

Gerono (also in extended form) is given as follows [15]: 

                                       
sin

sin 2

x a t

y b t




                             (3) 

Comparing (2) and (3), we finally choose the lemniscate of 

Gerono as the COG trajectory. There are two reasons. First, 

the form of the parametric equation is simpler. Second and 

more importantly, the amplitudes of the lemniscate of Gerono 

in the x  and y  directions are a  and b , which is convenient 

for design and control while the lemniscate of Bernoulli is not 

(The amplitude in the y-direction is not b ). 

The COG trajectory also needs to take into account the gait 

cycle period T  and the step length d . Assume that the 

walking direction is along the y-axis, then the trajectory for 

the COG is designed as follows: 

                           

2
sin( )

4
sin( )

x a t
T

t
y b t d

T T







 

                        (4) 

C. Coordination of the COG motion with foot swing 

Next, to make the robot have a complete gait, we need to 

carry out periodic consistent planning for the trajectory of the 

COG and the trajectory of the foot. Fig. 8 shows the leg swing 

events during the COG moving. 

 
Fig.8.   Leg swing events during the COG moving. 

 

Leg swing consists of a lift-off phase (From the red circle 

to the yellow circle) and a touch-down phase (From the 

yellow circle to the green circle). Because of DST, the 

right-front foot leaves the ground immediately when the 

right-hind foot touches the ground. The left-front foot and 

left-hind foot are the same. This process is represented in the 

figure as overlapping green and red circles at 
4

T
 and 

3

4

T
. 

But in the transition from the right-front foot to the left-hind 

foot and the left-front foot to the right-back foot, we must add 

a four-leg stance phase to maintain stability. That is the stage 

from the green circle to the red circle in the figure (not 

overlap). 

When comparing the swing phase of the leg with the 

supporting triangle shown in Fig. 4, it can be found that the 

COG is in the triangle. At the same time, when the right-hind 

foot transitions to the right-front foot and the left-hind foot 

transitions to the left-front foot, the COG is in the DST and 

the robot is stable. Therefore, the whole moving process of 

the robot is stable and has a large stability margin (to be 

analyzed in detail in the next section). 

D. The trajectories of the four legs 

   The swing trajectory of each leg is a smooth sinusoidal 

curve. In order to keep the leg movement in harmony with the 

body movement, we make each leg move for 1/5 of a 

complete gait period T. Corresponding to Fig. 6, phase 2,3,5,6 

is T/5, and phase 1,4 is T/10. From Eq.(4), we can see that the 

body has a forward component motion 
t

d
T

 , which enables 

the body to move a distance d  along the y direction in one 

period. So each leg also has to move a distance d  in a period. 

Since each leg only takes 
1

5
T  to move, the legs should move 

five times the speed of the body. The motion trajectory 

equation is as follows: 

                  

0

1
5 )

40

5
sin )

40

2 10 10 18
where ( , ), ( , ),

40 40 40 40

22 30 30 38
                ( , ), ( , )

40 40 40 40

rh rf

lh lf

dx

T
dy d t

T

T
dz h t

T

T T T T
t t

T T T T
t t





 

 

 

 

           

           （

           （

    

            (5) 

The leg is not moving in the x  direction. h  is the 

sinusoidal amplitude, representing the maximum height of 

the lifting leg of the robot. rht  represents the time for the 

right-hind leg to swing in one period. Same are with the other 

three legs. We have to pick the appropriate h  to make sure 

that the leg is in the reachable space. The same goes for the 

other three legs. 

III. STABILITY MARGIN ANALYSIS 

      When the robot’s dimensions and the step length are 

given, we can calculate the stability margin at any time for a 

given COG trajectory determined by the lemniscate of 

Gerono. In a gait cycle, the minimum stability margin is the 

main object we should pay attention to. In other words, the 

stability margin is greater than the minimum value 

throughout the walking cycle, and we will optimize this 

minimum value to optimize the stability margin of motion. 

      We can change the shape of the COG trajectory by 

changing the parameters a  and b of the Gerono lemniscate in 

Eq. (3). And the stability margin is related to the shape of the 

COG curve. Also, the stability margin is related to the shape 

of the supporting triangle in the ground, i.e., it is also related 

to the step length of the robot. 

A. The effects of parameters a  and b  

According to the Gerono lemniscate equation, parameter 

a   determines the height of the curve, while parameter b   

determines the width of the curve, as shown in Fig. 9.  
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Fig.9.  The influence of parameters a   and b  on the trajectory shape. 

 

We discuss the influence of parameters a  and b  on the 

stability margin and their optimization process for Model 1. 

The four-leg stance phase is very stable and the its stability 

margin will not be discussed. When one leg swings and the 

other three are in contact with the ground, we assume that the 

positions of the three legs in contact with the ground are 

1 1( , )x y  2 2( , )x y  3 3( , )x y  , and the projection of the COG on 

the ground is 0 0( , )x y .In this case, the formula of stability 

margin of the robot is as follows: 

2 1 0 1 2 0 1 2 1 2 1 1

1
2 2

2 1 2 1

3 1 0 1 3 0 1 3 1 3 1 1

2
2 2

3 1 3 1

3 2 0 2 3 0 2 3 2 3 2 2

3
2 2

3 2 3 2

1 2 3

| ( ) ( ) +(y ) ( ) |

( ) ( )

| ( ) ( ) +(y ) ( ) |

( ) ( )

| ( ) ( ) +(y ) ( ) |

( ) ( )

min{ , , }

y y x x x y y x x x y
m

y y x x

y y x x x y y x x x y
m

y y x x

y y x x x y y x x x y
m

y y x x

M m m m

     


  

     


  

     


  



      (6) 

Model 1 is built based on actual Robot 1. Its body length is 

0.6 m and its width is 0.4 m. If we assume that step length d  

is 0.05m, and firstly take an  arbitrary pair of appropriate a   

and  b  to observe the change of stability margin in one period 

( a  is 0.03, b  is 0.05 in this case), we can calculate the 

stability margin during one gait cycle as shown in Fig.10. 

 

 
Fig.10.   The actual trajectory of a complete period and the stability margin.  

 

The trajectory of the COG and the supporting polygons at 
each stage are shown in Fig.10 (a). The red circle represents 
the initial position of the four feet. The green circle represents 
the position of the four feet after one period of movement. 
Since the order of the swinging leg is [RH, RF, LH, LF], the 
supporting triangles appear in order: [red, dark blue, green, 
and light blue] which is shown in Fig.10 (a) .By using Matlab, 
we can compute the value of the stability margin in one period, 
which is shown in Fig.10 (b). The local minimum points in 
the figure are P  and Q . As we discussed above, now the 

problem of optimizing the stability margin of a period is 

transformed into optimizing P  and Q . We need to select 

appropriate parameter a  and b  to maximize the minimum 

stability margin within a period. We take several pairs of a  

and b  to analyze the stability margin curves, and the results 

are shown in Fig. 11 

 

Fig.11.   The influence of different a  and b stability margin curve. 

 

It can be seen from Fig. 11 that when a  is fixed and b is 

gradually increased, point P moves upward significantly 
while point Q changes little or almost unchanged. However, 

when b remains unchanged and a gradually increases, it can 

be seen that point P moves upward without significant 
improvement, but at this point, point Q changes significantly. 

By setting min{ , }M P Q  as the minimum stability margin 

over a period, we can get the relationship of M with respect 
to a  and b , which is shown in Fig. 12. Take the 

appropriate a  and b such that M has a maximum value, 

which is a convex problem according to the above analysis. 
So, we can find a pair of a and b to optimize M . it 

guarantees the minimum value of the stability margin to be 

maximized. We can get the current optimal in this case：
0.211a  , 0.105b  . The optimal stability margin is 

0.0883M  ； 

 

Fig.12.  The minimum stability margin M with respect to a  and b  

B. The influence of step length on stability margin 

The support polygon is composed of the support points 

between the foot and the ground, so different step sizes will 

not only affect the robot’s speed but also change the shape of 

the support polygon, thus affecting the stability margin. 

Similarly, we expect the planner to be able to calculate the 

optimal step length in this gait according to the different 

configurations of the robot (simply represented as length and 

width), that is, moving at this step length can reach the local 

maximum of the minimum stability margin. In the working 

space of the robot’s feet, the effect of step size on stability 

margin is a convex problem, too. Still using Model 1 for 

analysis. We have obtained the optimal a  and b  of the gait 

in this model. Apply this a  and b and continue to explore the 
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relationship between step length and stability margin. 

Through MATLAB, the relationship between the step length 

and the minimum stability margin of the robot’s periodic 

motion is shown in Fig. 13. 

 
Fig.13.   The relationship between the step length and the minimum stability 

margin. 
 

The purpose of exploring the influence of step length on 

stability margin is not just to obtain the optimal step length. 

More importantly, this algorithm can balance the step length 

and stability margin according to demand.  If the stability 

margin of our demand is already satisfied, then we can change 

the step size appropriately to control the speed of the robot. 

C. Applications of algorithms on different robots 

Another benefit of this gait algorithm is its generality, 

rather than just being designed for a particular robot. This also 

allows it to be applied to a variety of robots requiring high 

stability. When applied to different robots, the process of 

automatically calculating the optimal parameters a  and b  of 

the current robot is as follows: 

 
Fig. 14 Automatically obtain the optimal parameters. 

 

If the algorithm is applied to the new quadruped robot, first 

of all, the body length and width of the current robot should 

be obtained, as well as the expected accuracy “acc”. By 

setting the “acc”, the error range of parameters a  and b  can 

be controlled. Besides, according to the geometry, we can 

find (0, )
2

L
a  and (0, )

2

W
b . By traversing the entire 

interval, we can get the maximum M, and then the optimal 

parameters a  and b  are obtained. 

 

IV. SIMULATION RESULTS 

     In order to verify the feasibility of the proposed method, 

we carried out simulation verification in the V-rep software 

with the Newton physics engine.   

We will carry out simulations on the two simulation 

models respectively. Firstly, the correctness of the theory will 

be verified on Model 1, and the improvement of stability 

margin in robot motion will be visually demonstrated through 

a mass block experiment. Secondly, the gait algorithm will be 

applied to Model 2. Model 2 is a grasping robot that can 

perform a special task. Its body is equipped with a 

reconfigurable robotic arm and various sensors that create 

large deviations in the COG position with the geometric 

center. The application of the gait algorithm in Model 2 can 

verify the adaptability of the algorithm in different robots as 

well as the insensitivity of the algorithm to the position of 

COG. 

A.    Simulation results of the gait 

The gait was verified in V-rep simulation software. The 

simulation result is shown in Fig.15. The quadruped robot 

walks to the right. The yellow curve is the trajectory of the 

COG. It can be seen that the trajectory of COG follows a 

periodic trajectory based on the Gerono lemniscate. Although 

the speed of the robot is not optimal, the stability of the robot 

is definitely better. Verification of stability is carried out later. 

 
Fig. 15 Simulation results of the gait in Model 1 

 

It should be noticed that in this gait, there are two special 

cases. For the two parameters a  and b  in the Gerono 

lemniscate, when one of the parameters is zero, they lead to 

two extreme cases. When parameter a  is zero and parameter 

b  is not zero, the COG trajectory degenerates into a straight 

line. The COG of the quadruped robot moves backwards and 

forwards in the straight line. The simulation result is shown in 

Fig.16(a). That’s because the x-component of the robot’s 

motion is zero. There’s only an offset in the y-direction. 

Similarly, when a  is not zero and b  is zero, the COG 

trajectory degenerates into a standard sinusoidal curve as 

shown in Fig. 16(b). In both cases, the robot walks in a 

smooth and stable way. 
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Fig. 16 Two extreme states of the gait algorithm 

 

B. Stability optimization analysis 

   For the stability analysis, the previous section has made full 
theoretical analysis. This section is to observe whether the 
stability is optimized through the simulation software. The 
method is to add a mass block to the body of the quadruped 
robot. This test also takes into account a special task in real life, 
that is, for a quadruped robot transporting goods, which are 
small relative to the body, as the robot moves, the goods on the 
body may move relative to the body for some reason. 
Obviously, if the mass is distributed symmetrically along the 
geometric center of the robot body, no matter what the mass is, 
stability will not be affected. However, if the mass is in a 
corner of the body, then it has a relatively large effect on the 
stability of the robot. 

Considering that this algorithm will also be implemented in 

subsequent practical tasks, the parameters of the simulation 

robot are similar to the real robot in all aspects. Each leg 

weighs 8 kg and the body 18 kg. The total weight of the 

quadruped robot is about 50 kg. The simulation parameters 

are the same as this. 

   The simulation results are shown on the left of Fig. 17. It 

can be seen that a cube with a side length of 0.2m was placed 

close to the left-front foot of the quadruped robot. When its 

mass is 20kg, it has almost no influence on gait stability. 

This mass is 40% of the total mass of the robot, and the 

mass is located in the corner of the robot body. The excellent 

stability of this gait is well demonstrated. 

 

 
Fig. 17 Simulation results of model stability in V-rep. 

 

    We increase the weight of the block until the robot loses 

stability. It is found that 31 kg is the maximum acceptable 

weight of the block, which is 62% of the body mass of the 

robot. Beyond this point, the robot will tip over sideways. 

With a mass between 20-31kg, the robot will have poor 

stability in the process of movement, and its gait will be 

distorted but will not tip over. A long time of movement leads 

to a cumulative error that causes the robot to deflect in the 

direction of the mass, which is shown in the right of Fig. 17. 

  Finally, we extended the gait with omnidirectional motion. 

However, the design and tuning of parameters a  and b  

under omnidirectional motion are different. The influence of 

step length on the stability margin should also be discussed 

further. We simply designed the parameters a  and b , and 

specified the step length xd  and yd . The simulation results in 

the simulation software are shown in Fig. 18. Our subsequent 

work will do more analysis on this omnidirectional gait. 

 

 
Fig. 18 The extension of the gait to omnidirectional walking. 

 

C. The adaptability of this gait on different robots 

  All the parameters of simulation Model 2 are also 

established based on the real Robot 2. Due to the special task 

requirements of Robot 2, the manipulator and the sensors on 

the robot body makes the COG of the robot deviate from the 

geometric center to a large extent. The general gait algorithm 

is likely to cause problems in the stability of the robot during 

task execution.  That’s where our gait algorithm, which is 

insensitive to the center of gravity and significantly increases 

the stability margin, can be applied to. 

For some major parameters, Model 2 has a body length of 

0.5 m, a body width of 0.4 m, and a length of 0.3 m for both 

upper and lower legs. The algorithm can automatically 

calculate the parameters a  and b  that have the best stability 

margin under this gait for this robot, and they are: a 0.166  

and b 0.109 respectively. For this robot, the minimum 

stability margin in a cycle is =0.840M .  

 
Fig. 19 Simulation results for Robot 2. 

 

The simulation results in V-REP are shown in Fig. 19. It 

can be seen that the Model 2 robot can walk smoothly forward 

in this gait. In fact, robots can also cross obstacles or climb 

stairs in this gait. When crossing obstacles, due to the 

asymmetry of the load on the body, it requires very high 

stability for the robot. The robot could easily tip over in this 

situation. But our gait algorithm can successfully accomplish 

this task. Experiments are also taken on real Robot 2, which 

can walk very well (see the video attached). Therefore, the 

effectiveness of the proposed method is fully demonstrated. 

V. Conclusions 

In this paper, we propose a new method for the static gait 
planning of quadruped robots by using the lemniscate of 
Gerono to determine the COG motion. For different robot 
configurations, the two parameters of the Gerono lemniscate 
are the main tuning parameters. The algorithm can 
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automatically solve the optimal parameters according to the 
sizes of the robots. On the other hand, the influence of the step 
length on stability margin is also discussed. According to the 
stability requirements of specific tasks, the planner may 
change the step length to obtain better stability. This gait 
method has been proved to improve the stability of static gait 
significantly. 

 In the V-REP simulation environment, the effectiveness of 

the proposed gait algorithm was verified.  The mass block 

simulation on Robot 1 shows that the proposed algorithm can 

improve the stability of the robot. Meanwhile, in another 

simulation, the algorithm is applied to the robot Model 2. This 

shows the adaptability of the algorithm to different robots. It 

is also proved that the gait algorithm is insensitive to the COG 

position of the robot. In the future, it is expected that this gait 

can be applied to more complicated environments to improve 

the adaptability of the robot. At the same time, the motion in 

any direction in the horizontal plane is simulated simply, 

which shows the robot can achieve omnidirectional walking 

in this gait. More analysis on the omnidirectional walking 

will be taken in the future. 
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